Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system.
نویسندگان
چکیده
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.
منابع مشابه
A novel ATP-requiring protease from skeletal muscle that hydrolyzes non-ubiquitinated proteins.
Previously, we isolated an ATP-dependent proteolytic pathway in muscle, liver, and reticulocytes that requires ubiquitin and the enzymes which conjugate ubiquitin to proteins. We report here that skeletal muscle contains another soluble alkaline energy-dependent (but ubiquitin-independent) proteolytic activity. The cleavage of non-ubiquitinated protein substrates by the partially purified prote...
متن کاملRegulation of ATP-ubiquitin-dependent proteolysis in muscle wasting.
Protein breakdown plays a major role in muscle growth and atrophy. However, the regulation of muscle proteolysis by nutritional, hormonal and mechanical factors remains poorly understood. In this review, the methods available to study skeletal muscle protein breakdown, and our current understanding of the role of 3 major proteolytic systems that are well characterized in this tissue (ie the lys...
متن کاملActivation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy.
The rapid atrophy of skeletal muscles upon fasting or denervation is due largely to an increased rate of protein breakdown. Blocking the lysosomal or the Ca(2+)-dependent pathways did not prevent increased proteolysis in muscles from fasted animals or following denervation. In contrast, upon food deprivation, the nonlysosomal ATP-dependent process increased by 150-350%. After refeeding, this pr...
متن کاملSepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.
We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal proteolysis was assessed by using the...
متن کاملMuscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway.
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 243 2 شماره
صفحات -
تاریخ انتشار 1987